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ABSTRACT 
The objective of this paper is to establish some common fixed point theorems for weakly increasing maps in 

partially ordered complete metric spaces satisfying a Geraghty’s type contraction. In fact here we generalized the 

earlier fixed point results of Gordji et al. [6]. 
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1. INTRODUCTION 
In few recent years many outcomes related to fixed point, coincidence point and common fixed point for some 

kinds of contractions in partially ordered metric spaces have been obtained. The existence of fixed points in 

partially ordered sets has been initiated by Ran et al. [11] with some applications to matrix equations. After that, 

Nieto et al. [8, 9] extended the outcomes of Ran et al. [11]. Further, Altun & Simsek [3] introduced the concept 

of weakly increasing maps and obtained certain results regarding to common fixed point in ordered metric spaces.  

 

Banach contraction principle in a complete metric space by replacing the Cauchy condition for convergence of a 

contractive iteration by an equivalent functional condition is achieved by Geraghty [5]. Further, Harandi et al. [4] 
extend the result of Geraghty [5] for generalized contraction in partially ordered complete metric space. In recent 

times, Gordji et al. [6] generalized the result of Harandi et al. [4] in the partially ordered complete metric spaces.  

 

The main purpose of this paper is to obtain some generalizations of Gordji et al. [6] for common fixed point 

theorems for weakly increasing maps in partially ordered complete metric spaces satisfying generalized 

contraction.  

 

2. PRELIMINARIES 
We start this section by some basic notations, definitions and results which are used in sequel. 
 

Definition 2.1: Let ��, �� be a partially ordered set and  �, �: � → � are said to be  

(2.1.1)  weakly increasing mapping if �
 �   ��
  and  �
 �   ��
 for all 
 ∈ �. ( [3]) 

(2.1.2)  partially weakly increasing mapping if �
  �   ��
  for all 
 ∈ �. ( [1]) 

Note that pair (�, �) is weakly increasing if and only if ordered pair (�, �) and (�, �) are partially 

weakly increasing but two weakly increasing maps need not be increasing.  

Further, Nashine et.al [7] gave 

 

Definition 2.2:[7] Let ��, �, �� be a partially ordered metric spaces. Then � is regular if   

(2.2.1) if a non-decreasing sequence �
�� in � exists such that 
� →  
 ∈  �  as � → ∞  then 
� �  
, ∀ �.  
Geraghty [5] generalized the Banach contraction principle in metric spaces and proved that 

If � is the family of functions �: �� → �0, 1� such that ����� → 1 implies �� → 0;  
 



  ISSN: 2277-9655 

[Chauhan et al., 7(12): December, 2018]                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [438] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

 

Theorem 2.3:[5] Let  �: � → � be a contraction of a complete metric space � satisfying 

(2.3.1) ���
, ��� �  ����
, �� ��
, ��,     ∀ 
, � ∈  �,  where � ∈  � which need not be continuous. Then for 

any arbitrary point 
! the iteration 
� " ��
�#$�, � %  1 converges to a unique fixed point of  � in �. 
 Further, Harandi et al. [4] generalized Theorem 2.3 in partially ordered metric spaces. 

 

Theorem 2.4:[4]  Let ��, �� be a partially ordered set and there exists a metric � in � such that ��, �� is a 

complete metric space. Let �: � → � be a non-decreasing mapping such that there exists 
! ∈  � with 
!  �   �
!  

satisfying (2.3.1) ∀ 
, � ∈  � with 
  %   � and  

(2.4.1)  either � is continuous or (2.2.1) holds. 

(2.4.2) ∀ 
, � ∈  �  there exists & ∈  � which is comparable to 
 and �. Then � has a unique fixed point. 

Recently, Gordji et al. [6] generalized the result of Harandi et.al [4] in partially ordered complete metric 

spaces and proved that: 

 Let ' is the class of the functions ( ∶ �0, ∞� → �0, ∞� such that 

(i) ( is non-decreasing; (ii) ( is continuous; (iii) (��� " 0 iff  � " 0; (iv) (�* + ��  �  (�*� + (���.  
 

Theorem 2.5:[6]  Let ��, �� be a partially ordered set and there exists a metric � in � such that ��, �� is a 

complete metric space. Let �: � → � be a non-decreasing mapping such that there exists 
! ∈ � with 
! �  �
!  

satisfying (2.4.1), (2.4.2) ∀ 
, � ∈  � with 
 %  �, 
(2.5.1)  (����
, ��� �  � ,(���
, �� - (���
, �� ,   where  � ∈  �, ( ∈  '.   
Then � has a unique fixed point.  

 

Lemma 2.6:[10] Let ��, �� be a metric space and  �
��  be a sequence in � such that ��
��$,  
�� is non-

increasing and  ��
��$,  
�� " 0                                                                                                                  
If �
2�� is not a Cauchy sequence then there exists an / 0 0 and two sequences �12� and ��2� of positive integers 

such that the following four sequences tends to / as 2 →  ∞;    
(2.6.1)   3��
456 , 
4�6 7, 3��
456 , 
4�6�$ 7, 3��
456#$, 
4�6 7, 3��
456#$, 
4�6�$ 7. 
 

3. MAIN RESULT 
We generalize Theorem 2.5, for weakly increasing maps in partially ordered complete metric space. 

 

Theorem 3.1: Let ��, �� be a partially ordered set and there exists a metric � in � such that ��, �� is a complete 

metric space. Let  �, � ∶ � →  �  are weakly increasing maps such that �� ⊆  ��  satisfying 

(3.1.1)        (����
, ��� �  � ,(�9�
, �� - (�9�
, �� , where 

9�
, �� " 1:
� ��
, ��, ��
, �
�, ���, ���, 1
2 ���
, ��� + ���, �
��� 

for all 
, � ∈  � with 
 %  �,  � ∈  � and ( ∈  '.   
(3.1.2) either � or � is continuous. Or (2.2.1) holds. Then � and � have a unique common fixed point. 

 

Proof: Since � and � are weakly increasing mappings such that �� ⊆  ��  so we can construct a sequence �
�� 

in � starting with arbitrary  
! ∈  � such that  
$ " �
! �  ��
! " �
$,   
4 " �
$  �  ��
$ " �
4,   
; " �
4  �  ��
4 " �
;, inductively 
4��$ " �
4� and  
4��4 " �
4��$ for all �  %   0. i.e. 
$ � 
4 � 
; � ⋯ �  
� � 
��$ � ⋯  

Now we prove that � 
�� is a Cauchy sequence in �. For this let us consider that ��
4� , 
4��$� 0 0  for 

every  �.  If not then  
4� " 
4��$, for some �, therefore using (3.1.1), we have 

(���
2�+1, 
2�+2� " (����
2�, �
2�+1� �  � ,(�9�
2�, 
2�+1� - (�9�
2�, 
2�+1� , 
where  

9�
4� , 
4��$� " 1:
���
4� , 
4��$�, ��
4� , �
4��, ��
4��$, �
4��$�, 1
2 ���
4� , �
4��$� + ��
4��$, �
4���� 
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                      " 1:
���
4� , 
4��$�, ��
4� , 
4��$�, ��
4��$, 
4��4�, $4 ���
4� , 
4��4� + ��
4��$, 
4��$��� 
                       " 1:
�0, 0, ��
4��$, 
4��4�, $4 ���
4� , 
4��4� + 0�� 

                       "  ��
4��$, 
4��4�. 
Hence  (���
2�+1, 
2�+2� �  � ,(���
2�+1, 
2�+2� - (���
2�+1, 
2�+2� . 
Since 0 �  � = 1,  we have (���
4��$, 
4��4�� = (���
4��$, 
4��4�� a contradiction.  

Hence  
4��$ " 
4��4. Using the similar arguments, we obtain 
4��4 " 
4��; and so on. Thus  � 
�� turns out to 

be a constant sequence and 
4� is the common fixed point of � and �.  
 Now ��
4� , 
4��$� 0 0  for every  �, since 
 " 
4� and � " 
4��$ are comparable so using (3.1.1), we 

have  (���
2�+1, 
2�+2� " (����
2�, �
2�+1�  
                                       �  � ,(�9�
4� , 
4��$� - (�9�
4� , 
4��$�                                                                  (3.1) 

where  

9�
4� , 
4��$� " 1:
���
4� , 
4��$�, ��
4� , �
4��, ��
4��$, �
4��$�, 1
2 ���
4� , �
4��$� + ��
4��$, �
4���� 

                      " 1:
���
4� , 
4��$�, ��
4� , 
4��$�, ��
4��$, 
4��4�, $4 ���
4� , 
4��4� + ��
4��$, 
4��$��� 
                      " 1:
���
4� , 
4��$�, ��
4��$, 
4��4�� 
Now  9�
4� , 
4��$� " either ��
4��$, 
4��4� or ��
4� , 
4��$� 

If  9�
4� , 
4��$� " ��
4��$, 
4��4� then from (3.1), we have  

(���
2�+1, 
2�+2� �  � ,(���
2�+1, 
2�+2� - (���
2�+1, 
2�+2� , since 0 �  � = 1,  we have 

(���
4��$, 
4��4�� = (���
4��$, 
4��4�� which is a contradiction.  

Hence 9�
4�, 
4��$� " ��
4� , 
4��$� and from (3.1), we have  

(���
2�+1, 
2�+2� �  � ,(���
2�, 
2�+1� - (���
2�, 
2�+1�                                                                    (3.2) 

Since 0 �  � = 1,  we have  (���
4��$, 
4��4��  �  (���
4� , 
4��$��. 

By similar argument for 
 "  
4�#$ and � " 
4� , we have  (���
4� , 
4��$��  �  (���
4�#$, 
4��� 
Hence for any �, (���
2�+1, 
2�+2� � (���
2�, 
2�+1� � (���
2�>1, 
2�� … implies that the sequence �(���
� , 
��$���  is monotonically non-increasing sequence. 

Hence there exists @ %  0 such that (���
� , 
��$�� " @                                                                                  (3.3) 

From (3.2), we have  

                  A�B�CDEFG,CDEFD��
A�B�CDE,CDEFG��  �  � ,(���
4� , 
4��$� - = 1   

Letting � → ∞   and using (3.3), we have  ��(���
4� , 
4��$��� " 1,  since � ∈  � yields that @ "0, consequently (���
� , 
��$�� " 0.   
Now we claim that �
2�� is a Cauchy sequence. Suppose on the contrary that �
2�� is not a Cauchy 

sequence and using Lemma 2.6 there exist an / 0 0 and two sequences �12� and ��2� of positive integers such 

that the following four sequences tend to / when 2 → ∞:    
  3��
456 , 
4�6 7, 3��
456 , 
4�6�$ 7, 3��
456#$, 
4�6 7, 3��
456#$, 
4�6�$ 7.  
Using (3.1.1) for 
 " 
456#$ and  � " 
4�6 , we have 

( ,��
212 , 
2�2+1 - " ( ,���
212>1, �
2�2 -          
                                        �  � H( ,9�
456#$, 
4�6 -I ( ,9�
456#$, 
4�6 - 



  ISSN: 2277-9655 

[Chauhan et al., 7(12): December, 2018]                                                            Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [440] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

 

 

where 9�
456#$, 
4�6 " 1:
 � ��
456#$, 
4�6 , ��
456#$, �
456#$ , ��
4�6 , �
4�6 , 
 12 ���
456#$, �
4�6 + ��
4�6 , �
456#$ �� 

                             " 1:
 � ��
456#$, 
4�6 , ��
456#$, 
456  , ��
4�6 , 
4�6FG , 
 12 ���
456#$, 
4�6FG + ��
4�6 , 
456 �� 

Letting 2 →  ∞ and using lemma 2.6, we have  

JK1�→L9�
456#$, 
4�6 " M/, 0,0, �/ + /�
2  N  " /. 

so   A�B,CDO6 ,CDE6FG-�
A�P,CDO6QG,CDE6-�  �  ��(�9�
456#$, 
4�6 ��  �  1  using the fact that   

/ " JK1�→L���
456#$, �
4�6 " JK1�→L9�
456#$, 
4�6 , we get 

 ��(�9�
456#$, 
4�6 �� " 1,  Since � ∈  �, hence  (�9�
456#$, 
4�6 � " 0.  Since ( is a continuous 

mapping, (�/� " 0 and so / " 0 which contradicts of  / 0 0 and shows �
2�� is a Cauchy sequence. By 

completeness of � there exist a point  & ∈  � such that �
�� and its subsequences �
2�� and �
2�+1� are also 

converges to &.  
 Suppose that � is continuous since 
4� →  &  so we have 
4��$ " �
4�  →  �&. On the other hand since 
4��$ →  & it follows that �& " & now, since & �  & taking 
 " � " & in (3.1.1), we have 

 (����&, �&� �  � ,(�9�&, &� - (�9�&, &� , 
where 

9�&, &� " 1:
� ��&, &�, ��&, �&�, ��&, �&�, 1
2 ���&, �&� + ��&, �&��� 

               " 1:
� ��&, &�, ��&, &�, ��&, �&�, 1
2 ���&, �&� + ��&, &��� 

               " ��&, �&� 
Hence  

            (����&, & � �  � ,(���&, �&� - (���&, �&� = (���&, �&��, yields that �& " &.  
           Again suppose that � is a continuous since 
4��$ →  & so we obtain  
4��4 " �
4��$ →  �&. On the other hand since 
4��4  →  & it follows that �& " &  now, since & �  & taking 
 " � " & in (3.1.1), we have  

                         (����&, �&� �  � ,(�9�&, &� - (�9�&, &� , 
where 

9�&, &� " 1:
���&, &�, ��&, �&�, ��&, �&�, 1
2 ���&, �&� + ��&, �&��� 

               " 1:
���&, &�, ��&, �&�, ��&, &�, 1
2 ���&, &� + ��&, �&��� 

                                                        " ��&, �&� 
Hence  
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            (����&, & � �  � ,(���&, �&� - (���&, �&� = (���&, �&��, yields that �& " &.             
 Now if (2.2.1) holds, then 

   ���&, & � �  ���&, �
4� � + ���
4�, & � 

Since ( is non-decreasing and sub-additive so we have 

     (����&, & ��  �  (����&, �
4� �� + (����
4�, & �� 

                                          �  ��(�9�&, 
4�  ���(�9�&, 
4� �� + (���
4��$, & ��         

where 

9�&, 
4�� " 1:
 ���&, 
4��, ��&, �&�, ��
4�, �
4��, 1
2 ���&, �
4�� + ��
4� , �&��� 

 

                 " 1:
 ���&, 
4��, ��&, &�, ��
4� , 
4��$�, 1
2 ���&, 
4��$� + ��
4� , &��� 

                                             " 1:
 ���&, 
4��, ��&, &�, ��
4� , 
4��$�, 1
2 ���
4� , 
4��$��� 

                                            " 1:
 ���&, 
4��, 0, ��
4� , 
4��$�� 

Since ��&, 
4�  � →  0 , ��&, 
4��$ � →  0,  ��
4� , 
4��$� → 0 as � → ∞  

Hence  

                  (����&, & � � (�0� + (�0� " 0. 
    i,e (����&, & � " 0 if and only if ���&, & � " 0 therefore �& "  &. By using similar argument we have 

�& "  &. Thus & is a common fixed point of � and �.  
For the uniqueness suppose that & and R be any two common fixed points of � and � then from (3.1.1), 

we have ���&, �R� �  ��9�&, R� 9�&, R�    

where  

9�&, R� " 1:
� ��&, R�, ��&, �&�, ��R, �R�, 1
2 ���&, �R� + ��R, �&��� 

                " 1:
 S ��&, R�, 0,0, $
4 ���&, R� + ��&, R� T  " ��&, R� 

Hence  ��&, R� �  ����&, R� ��&, R� = ��&, R�, yields that & " R   i.e. common fixed points of �and � is unique 
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